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face-centred-cubic phase in an AI-Li -Cu-Mg-Zr 
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Icosahedral T 2 phases can form either by solid-state precipitation or during solidification in 
AI-Li-Cu-Mg alloys. The T2 phase forming during solidification can transform to an R phase 
at high annealing temperatures. The T2 phase forming by solid-state precipitation coexists with 
the Y phase, which has a face-centred cubic (f.c.c.) structure with lattice parameter a~2.0 nm 
and can form microtwins with the twin plane of (111). The orientation relationships between 
the C phase and the T2 phase are: i,511Y(0 1 1), Y(113) ;  i311Y(111), Y(123) ,  Y(115) ;  
Y(235) ;  i2l[Y(01 1), Y(1 1 1), Y(1 1 2), Y(1 1 3), Y(1 1 5). 

1 .  I n t r o d u c t i o n  
In AI-Li-Cu (-Mg) alloys, an icosahedral T z phase 
can form either by solid-state precipitation or during 
solidification [1-3]. In A1-Li-Cu alloys, the T 2 phase 
shows microtwinS [2, 4] and can transform into a TB 
phase with high-temperature treatment [5]. In 
A1-Li-Cu-Mg alloys, the T 2 phase can transform to 
an R phase for annealing over 500~ [6, 7]. Up to 
now, the crystal phases of orthorhombic O [7], hexa- 
gonal Z and tetragonal C [-8, 9] have been identified. 
Audier et al. [10] have found a possible f.c.c. A12LiMg- 
phase intergrowth with the C phase. 

In the materials studied, the f.c.c, phase independ- 
ently existed in the grain boundaries. The purpose of 
this paper is to further study the structure of the Y 
phase and the orientation relationship between the Y 
and T z phase; some interesting results were found. 

2. Experimental procedure 
The chemical compositions of the experimental alloy 
were 2.55wt% Li, 1.29wt% Cu, 0.93wt% Mg, 
0.13 wt % Zr and the balance was A1. The ingot was 
obtained by semi-continuous direct-chill casting, after 
homogenization a t  520~ for 20 h. The specimens 
were quenched in cold water and then aged at 190 ~ 
for 12 h after solution heat treatment at 525 ~ for 1 h. 
The specimens for observation by transmission elec- 
tron microscopy (TEM) were prepared by two-jet 
electropolishing in an electrolyte containing one part 
of HNO 3 to three parts of CH3OH (by volume). The 
TEM observation was performed on a H800 transmis- 
sion electron microscope at 200 k V. 

3. Results and discussions 
3.1. The structure of the Y phase 
A typical morphology of the Y phase in the aged 

condition is shown in Fig. 1. It can be seen that the Y 
phase is rather rough and exists in the grain boundary. 

Fig. 2 is a series of selected area diffraction (SAD) 
patterns from the Y phase, rotating along the [2. 2 0]* 
axis from the [00 1] zone. The reflection conditions 
show the Y phase has a f.c.c, structure with lattice 
parameter a = 2 nm. Comparing practical tilting with 
calculated angles, as shown in Table I, further con- 
firms the correctness of the structure determined. 

3.2. The tw ins  of the  Y phase  
The Y phase forms twins easily, Fig. 3 shows the SAD 
patterns of twins. Fig. 3a shows the following twin 
relationship: (220)all(220h, [1 1 0311111 1 432. Fig. 3b 
shows the following twin relationship: (2 2 0)111(2 2 0)2, 
[1113111[ii532. Fig. 3c shows the following twin 
relationship: (1 i 1)t[l(1 5 1)2, [5 3231[[[1 1 6]2. Fig. 3d 
shows the following twin relationship: (1 1 1)11 I(1 1 1)2, 
[ i 0  13111110i32. 

The transformation matrix describing the above 
orientation relationships is 

T = � 8 9  2 - 1  2 
, 2 2 - - 1  

This matrix also describes the twin-orientation rela- 
tionship in f.c.c, structures. The twins must be smaller 
than 1 nm and should be microtwins. 

3.3. The relationship between the Y phase and 
m 2 phase 

It should be recalled that the T 2 phase can form either 
by solid-state precipitation or during solidification 
[1-3-1. The T 2 phase forming by solidification is larger 
than 1 gm and can transform to the R phase which 
exists both in grains and at grain boundaries in 
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Figure 1 The morphologies of the Y phase in the grain boundary. 

Figure 2 A series of SAD patterns along the [220]* axis from [00 1] zones: (a) [00 1], (b) [1 1 6], (c) [1 14], (d) [11 2], (e) [1 l 1], and 
(f) [ i  i o]. 

TABLE I The experimental and calculated angles (in degrees) 
included between [001] and other zones 

Angles (deg) Zones 

[1163 [1143 [1123 [1113 [110] 

Practical tilting angles 13 20 35 55 90 
Calculated angles 13.3 19.5 35.3 54.7 90 

annealing over 500 ~ [6, 7]. The T 2 phase forming 
by solid-state precipitation is smaller than 0.2 ~tm 
and exists only in grain boundaries in the conven- 
tional aged treatment. In this case, the Y phase has the 

same morphology as the T 2 phase and the two phases 
coexist. 

Fig. 4a shows the SAD pattern along the 3 axis of 
the T 2 phase. Ten-member-strong spots of three rings 
are clearly seen. The interplanar spacings correspond- 
ing to the first, second, and third rings are 0.377, 0.233 
and 0.144 nm, respectively. 

Fig. 4b shows the SAD pattern along the [0 1 1] axis 
of the crystal Y phase. The indexes of the ten-strong 
spots on the first ring are 3 3 3, 51 1, 5 1 1, 3 3 3, 0 4 74, 
333, 5 1 I, 5 1 1, 333, and 0744; and their interplanar 
spacings are 0.385, 0.385, 0.385, 0.385, 0.354, 0.385, 
0.385, 0.385, 0.385, and 0.354 nm, respectively. The 
indexes of the ten-strong spots on the second ring are 
535, 822, 822, 553, 066, 555, 822, 822, 555, and 
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Figure3 The SAD patterns from microtwins in the Y phase (a) (220)1t{(220)2, [110]1L][114]2; (b) (220)a11(220)2, [11111H[11512; (c) 
(11-1)~tt(]-51)2, [532-]111[116]2; and (d) (t 11)1][(111)2 , []-01]1 ] I[10112. 

Figure 4 The SAD patterns from the T 2 and Y phase: (a) 5-axis SAD pattern of the T 2 phase; (b) and (c) [011 ] of the Y phase showing pseudo 
five-fold symmetries, and (d) [113] and corresponding [110] microtwin of the Y phase showing pseudo five-fold symmetry. 

0 6 6; and their interplanar spacings are 0.231, 0.236, 
0.236, 0.236, 0.236, 0.231, 0.236, 0.236, 0.236, and 
0.236 nm, respectively. The indexes of the ten-strong 
spots on the third ring are 8 8 8, 13 3 3, 1 3 3 3, 8 8 8, 
01010 ,  888, 1333, 1333, 888, and 01010;  and 
their interplanar spacings are 0.144, 0.146, 0.146, 
0.144, 0.141, 0.144, 0.146, 0.146, 0.144, and 0.141 nm, 
respectively. 

Fig. 4c shows the SAD pattern along the [01 1] axis 
of the Y phase, where the ten-member-strong spots of 

three rings are clearly seen; similar to Fig. 4b. It can 
also be clearly seen that some weak spots are blurred, 
which may be caused by twins compared with Fig. 3d. 

Fig. 4d shows a [1 1 3] SAD pattern from the Y 
phase and a [1 1 0] SAD pattern from the twin. The 
indexes of the ten-strong spots on the first ring are 
7440, 333, 422, 242, 333, 4740, 333, 422, 242, and 
3 3 3; and their interplanar spacings are 0.354, 0.385, 
0.408, 0.408, 0.385, 0.354, 0.385, 0.408, 0.408, and 
0.385 nm, respectively. The indexes of the ten-strong 
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Figure 5 The SAD patterns from the T 2 and Y phases, (a) 3-axis SAD pattern from the T 2 phase; (b) to (e) are [111], [115], [123], [235], 
respectively, of the Y phase showing pseudo five-fold symmetries. 

Figure 6 The SAD patterns from the T 2 and Y phases, (a) 2-axis SAD pattern from the T 2 phase; (b), (c), (d), (e), and (f) are [011], [111], 
[112], [113], [115], respectively, of the Y phase showing pseudo two-fold symmetries. 

spots on the second ring are 6 60, 5 5 5, 22 8, 22 8, 
5 5 5, 6 6 0, 5 5 5, 2 2 8, 2 2 8, and 5 5 5; and their inter- 
planar spacings are 0.236, 0.231, 0.236, 0.236, 0.231, 
0.236, 0.231, 0.236, 0.236, and 0.231 nm, respectively. 
Comparing fig. 4a and 4b-d, it is a coincidence that 
the second rings are more intense than the first and 
third rings. 

Fig. 5a shows the SAD pattern along the 3 axis of 
the T 2 phase, in which six-strong-spot discs are clearly 
seen. The interplanar spacing corresponding to the 
ten-member-strong-spot rings is 0.233 nm. Fig. 5b 
shows the SAD pattern along the [1 1 1] axis of the 

crystal Y phase. The indexes of the six-strong-spots 
are 660, 606, 066,  660, 606,  and 066; and each of 
their interplanar spacings is 0.236 nm. Fig. 5c shows 
the SAD pattern along the [1 1 5] axis of the Y phase. 
The indexes of the six-strong-spots are 6 60, 822,  
2- 8 2, 6 60, 8 2 2, 2 8 2; and each of their interplanar 
spacings is 0.236 nm. Fig. 5d shows the SAD pattern 
along the [1 2 3] axis of the Y phase. The indexes of the 
six-strong-spots on the first ring are 3 3 3, 2 4 2, 5 1 1, 

3 3, 2 742 and 51 ]; and their interplanar spacings are 
0.385, 0.408, 0.385, 0.385, 0.408, and 0.385 nm, respect- 
ively. The indexes of the six-strong spots on the second 
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ring are 5 5 5, 4 8 4, 9 3 1, 5 3 5, 4 g 4, and 9 3 i; and their 
interplanar spacings are 0.236, 0.204, 0.210, 0.236, 
0.204, and 0.210 rim, respectively. 

Fig. 5e shows the SAD pattern along the [2 3 5] axis 
of the Y phase. The indexes of the six-strong spots are 
5 5 5, 3 7 3, 8 2 2, 5 5 5, 3 7 3 and 8 2 2; and their inter- 
planar spacings are 0.236, 0.244, 0.236, 0.236, 0.244, 
and 0.236 nm, respectively, 

Fig. 6a shows the SAD pattern along the 2 axis of 
the T 2 phase. Fig. 6b--e shows the two-fold symmetries 
of the SAD patterns along the [0 1 1], [1 1 1], [1 1 2], 
[1 1 3], and [1 1 5] axes of the Y phase. Consequently, 
the (01 1) and (1 13) zones of the Y phase show 
pseudo five-fold symmetries; the (1 1 1), (123) ,  
(1 15), and (235)  zones show pseudo three-fold 
symmetries; (110) ,  (111) ,  (112) ,  (115)  zones 
show psuedo two-fold symmetries. 

Fig. 7 shows a superposition of the i5 stereographic 
projection of the T 2 phase (5, 3, and 2 poles are shown 
as solid shapes) on the Y [1 1 0] projection of the Y 
phase (poles are shown as Open circles) with i2 coincid- 
ence on [1 1 0]. The deviation is, in general, less than 
5 ~ The indexes in Fig. 7 have good coincidence, except 
those in italics, between the icosahedral phase 
(Til _ xV~) and the f.c.c, crystalline phase (NiTi2), which 
was observed directly by Zhang and Guo [11]. To 
sum up, the orientation relationship in Fig. 7 has: 
i51[Y(0 1 1) (three), and Y(1 1 3) (three); i3l[Y(1 11) 
(one), Y(1 23) (four), Y(1 1 5) (three), and Y(23 5) 
(two); i2JIY(011) (four), Y ( l l l )  (five), Y(1 12) 
(three), Y(1 1 3) (two), and Y(1 1 5) (six). 

The T 2 phase and the Y phase have the same 
morphologies, which coexist in the same grain bound- 
ary. Besides, the Y phase can form microtwins (as 
here), and the T2 phase can also form microtwins 
[2, 4]. All this strongly suggests that there are trans- 
formation relationships between the T 2 and the Y 
phase. 

4. Conclusions 
1. The Y phase has a f.c.c, structure with a lattice 

parameter a = 2 nm. 
2. The Y phase can form microtwins with the twin 

plane of (1 1 1). 
3. The orientation relationships between the Y 

phase and the T 2 phase are: 
i5]]Y(011), and Y(113);  i3] lY(l l l ) ,  Y(123),  
Y(1 15), and Y(235);  and i2HY(01 1), Y ( l l l ) ,  
Y(1 12), Y(1 1 3), and Y(1 1 5). 

Figure 7 A stereographic projection of the T 2 and Y phases with 
i51[Y[1 1 0]. The solid shapes are poles of the T 2 phase while the 
open circles are those of the Y phase. 
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